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Abstract
The squeezed harmonic oscillator Hamiltonian H = ωa†a + αa2 + α∗a†2

is
analysed, where a† and a are harmonic oscillator creation and annihilation
operators, ω is real, and α is a time independent constant. For the case that
ω2 − 4|α|2 > 0 it is known that the Hamiltonian possesses real and positive
eigenvalues. The exact eigenstates are constructed by using a Bogoliubov
transformation to express them in terms of the algebra and states of the harmonic
oscillator. Known properties of these states are reviewed and new results are
derived. Modified coherent states are constructed from the exact eigenstates
and shown to yield a unit projection operator for the original harmonic oscillator
Hilbert space via generalized Gaussian integrals. Transition elements between
harmonic oscillator coherent states are then evaluated exactly by using the
properties of the modified coherent state projection operator.

PACS numbers: 03.65.−w, 32.90.+a, 42.50.Dv

1. Introduction

The purpose of this paper is to analyse exactly the coherent state [1] transition element for
the case that the harmonic oscillator Hamiltonian is generalized to include time independent
two photon processes [2], often referred to as the squeezed harmonic oscillator Hamiltonian
[3]. Recently Emary and Bishop [4] have used a Bogoliubov transformation [5] to construct
the exact energy eigenstates of the closely related one and two-photon Rabi Hamiltonians
[6]. This method will be briefly reviewed and then used to find the exact eigenstates for the
squeezed harmonic oscillator Hamiltonian in terms of a superposition of the original harmonic
oscillator states. Such an expression allows an evaluation of the inner product of the exact
eigenstates with the fixed number basis states of the harmonic oscillator. The exact analysis
of the harmonic oscillator coherent state transition elements governed by this Hamiltonian is
performed by defining modified coherent states written in terms of the exact energy eigenstates
and using them to define a unit projection operator over the original harmonic oscillator Hilbert
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space. Because such a unit projection is a new tool for use in this analysis, its properties are
carefully investigated. It is shown that its completeness involves a more complicated pair
of Gaussian integrations than those associated with the usual harmonic oscillator coherent
states, and that certain criteria must be met to ensure that these Gaussian integrations remain
well defined. It is then shown that the transition elements between harmonic oscillator
coherent states considered in this paper meet these criteria. The coherent state transition
element can then be analysed exactly in the presence of two photon processes by projecting
the harmonic oscillator coherent states onto the modified coherent states and performing the
resulting generalized Gaussian integrations. The final result, given by equation (99), displays
significantly more complicated time dependence due to the two photon processes.

The squeezed harmonic oscillator Hamiltonian can be expressed in terms of bosonic
harmonic oscillator creation and annihilation operators as

H = ωa†a + αa2 + α∗a†2
+ 1

2ω, (1)

where a† and a obey the usual harmonic oscillator commutation relationship [a, a†] = 1 and
ω is the associated frequency. It is usually assumed that the time-independent constant α is
real, but for the purposes of this paper it will be allowed to be complex; the ramifications of
this are discussed at the end of section 3. Natural units will be used throughout the paper, so
that h̄ and c are set to unity. The operator a annihilates the harmonic oscillator ground state
|0〉, so that a|0〉 = 0 �⇒ 〈0|a† = 0. The set of states given by

|n〉 = a†n

√
n!

|0〉 (2)

are eigenstates of the usual harmonic oscillator Hamiltonian H0 = ωa†a + 1
2ω and are

orthonormal and complete. In this context, it is possible to view the harmonic oscillator
states as representing a single frequency mode ω of the photon field, where n determines the
number of photons in the state. The terms in the Hamiltonian (1) proportional to α then model
direct two photon emission and absorption processes, a fact easily seen by considering the
first-order perturbative matrix elements for H. The two-photon Rabi Hamiltonian [6] couples
the photon modes of (1) with a two level atom via the Pauli spin matrices. The eigenstates
of such a model have been discussed in previous works [4, 7], and so these models will not
be considered here. Instead, transition elements for harmonic oscillator coherent states will
be calculated exactly for the case that time evolution is governed by the squeezed harmonic
oscillator Hamiltonian (1).

The outline of the paper is as follows. In section 2 the Hamiltonian (1) is analysed using
operator techniques to derive the structure of its Hilbert space and the inner product of the
exact eigenstates with the harmonic oscillator basis states. In section 3 relevant aspects of
coherent states are briefly reviewed and the coherent state transition element governed by the
Hamiltonian (1) is defined and evaluated exactly using a modified coherent state projection
operator defined in terms of the exact eigenstates.

2. Exact energy eigenstates and inner products

In this section the exact energy eigenstates and their inner products will be derived from
the harmonic oscillator states and algebra via a Bogoliubov transformation [5]. The general
nature of these eigenstates has been discussed elsewhere [4]. However, the results in this
section regarding the nature of the inner product between the exact eigenstates and the original
harmonic oscillator states are new. It will be seen that these results are essential to verifying
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completeness of the exact eigenstates and understanding the modified coherent states defined
in section 3.

The first step in evaluating (1) is to find its exact eigenstates. This process begins by
introducing new operators, c and c†, by means of a Bogoliubov transformation [4, 5]

c† = g1a
† − g2a (3)

c = g∗
1a − g∗

2a
†, (4)

where in the general case g1 and g2 are complex numbers. Demanding that [c, c†] = 1 and
using the algebra of the a give

[c, c†] = |g1|2 − |g2|2 = 1. (5)

Result (5) guarantees that definitions (3) and (4) are invertible, yielding

a = g1c + g∗
2c

† (6)

a† = g∗
1c

† + g2c. (7)

Substituting (6) and (7) into (1) yields

H = �c†c + β∗c†2
+ βc2 + ε + 1

2ω, (8)

where the new coefficients are given in terms of the parameters of (1) and the gj :

� = (|g1|2 + |g2|2)ω + 2g1g
∗
2α + 2g2g

∗
1α

∗ (9)

β = g1g2ω + g2
2α∗ + g1

2α (10)

ε = |g2|2ω + g1g
∗
2α + g2g

∗
1α

∗. (11)

The process of ordering c† to the left in all expressions generates the form for ε.
The g1 and g2 are now chosen so that the complex constraint

β = β∗ = 0 (12)

is satisfied. If α = 0 in (1), then (3) and (4) can be chosen to reduce to c† = a† and c = a,
and this yields the boundary condition

lim
α→0

g2 = 0. (13)

Condition (5) is then consistent with the limit

lim
α→0

g1 = 1 (14)

which will be true up to an arbitrary phase. Condition (5) and the complex constraint (12)
remove three degrees of freedom from the two complex numbers g1 and g2, which naı̈vely
possess four degrees of freedom. However, g1 and g2 actually possess only three physical
parameters due to the freedom to adjust the overall phases of the operators in the definitions (6)
and (7). This follows from the fact that the process of normal ordering a transition element will
receive non-zero contributions only from terms involving equal numbers of a and a† operators.
As a result, transition elements are invariant under the simultaneous phase transformations
a → eiθa and a† → e−iθa†. These transformations leave (3) and (4) invariant if the gj undergo
the simultaneous transformations g1 → eiθg1 and g2 → e−iθg2. These transformations allow
one additional degree of freedom to be removed from the gj by an appropriate choice for θ .
In effect, this means there is a family of solutions to the Bogoliubov transformation that are
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equivalent up to the phase angle θ . Fixing the phase of the solution to be unity is similar to
gauge fixing in gauge field theory [8] and bears no physical significance.

Because all three physically relevant parameters in the gj are now fixed by condition (5)
and constraint (12), solutions to (5) and (12) consistent with the boundary conditions can be
found. Constraint (12) yields the quadratic equation

β

g1
2

= ω

(
g2

g1

)
+ α + α∗

(
g2

g1

)2

= 0. (15)

The root consistent with the boundary conditions (13) and (14) is given by

g2

g1
= −ω +

√
ω2 − 4|α|2
2α∗ . (16)

Substituting (16) into condition (5) yields

|g1|2 = 2|α|2
(4|α|2 − ω2 + ω

√
ω2 − 4|α|2)

, (17)

which is consistent with boundary condition (14). Combining result (17) with (16) gives

|g2|2 = ω −
√

ω2 − 4|α|2
2
√

ω2 − 4|α|2
. (18)

Combining results (17) and (18) yields

|g1|2 + |g2|2 = ω√
ω2 − 4|α|2

. (19)

Combining the complex conjugate of (16) with (17) gives

2g1g
∗
2α =

(
−ω +

√
ω2 − 4|α|2

)
|g1|2 = − 2|α|2√

ω2 − 4|α|2
. (20)

Finally, using (19) and (20) in (9) and (11) yields

� =
√

ω2 − 4|α|2 (21)

ε = 1
2 (� − ω) (22)

These results show that the method of the Bogoliubov transformation breaks down if
ω2 − 4|α|2 � 0. However, for the case that ω2 − 4|α|2 > 0, referred to hereafter as the
Bogoliubov criterion, the Hamiltonian (1) can be transformed into

H = �c†c + 1
2�. (23)

Coupling result (23) with the algebra (5) allows the eigenstates of the Hamiltonian (1) to
be defined in a manner identical to that of the simple harmonic oscillator. Defining the state
|0̃〉 through the relation

c|0̃〉 = 0 (24)

allows the eigenstates of (1) to be defined as

|ñ〉 = 1√
n!

c†
n|0̃〉. (25)

Using algebra (5) and property (24) immediately gives

H |ñ〉 = (
n + 1

2

)
�|ñ〉. (26)



Exact coherent state transition elements for the squeezed harmonic oscillator 2515

It follows that the eigenvalues of H are real and positive in a manner structurally identical to
the simple harmonic oscillator as long as the Bogoliubov criterion is met.

In order to determine the inner product between the eigenstates defined by (25) and the
original harmonic oscillator states (2) it is necessary to construct the state |0̃〉 from the states
of the harmonic oscillator. For the purposes of this paper the Baker–Campbell–Hausdorff
theorem [9] states that if the commutator of two operators [A,B] commutes with both A and
B, then

eA+B = e− 1
2 [A,B] eA eB (27)

and if [A,B] commutes with B then

A eλB = eλB(A + λ[A,B]) (28)

A e
1
2 λB2 = e

1
2 λB2

(A + λ[A,B]B), (29)

where λ is an arbitrary c-number parameter. Using (29) shows that

c exp

(
1

2

g∗
2

g∗
1

a†2
)

= (g∗
1a − g∗

2a
†) exp

(
1

2

g∗
2

g∗
1

a†2
)

= exp

(
1

2

g∗
2

g∗
1

a†2
)

g∗
1a. (30)

It then follows that the state that satisfies (24) is given by

|0̃〉 = N exp

(
1

2

g∗
2

g∗
1

a†2
)

|0〉, (31)

where N will be used to define a unit projection operator by normalizing the state (31). Because
state (31) has inherited the algebra of the simple harmonic oscillator by its definition, its inner
product with itself and the states (2) can now be calculated.

State (31) will first be normalized by fixing N. This is facilitated by expressing (31) in
terms of the harmonic oscillator states of (2) by expanding the exponential to obtain

|0̃〉 = N

∞∑
n=0

1

2nn!

(
g∗

2

g∗
1

a†2
)n

|0〉 = N

∞∑
n=0

√
(2n)!

2nn!

(
g∗

2

g∗
1

)n

|2n〉. (32)

Using orthonormality of states (2) it follows that

〈0̃|0̃〉 = |N |2
∞∑

n=0

(2n)!

4n(n!)2

( |g2|2
|g1|2

)n

. (33)

Because |g2|2/|g1|2 < 1 the series is absolutely convergent. Using the binomial expansion of
1/

√
1 − x shows that

〈0̃|0̃〉 = |N |2
√

|g1|2
|g1|2 − |g2|2 = |N |2|g1|, (34)

where (5) has been used. As a result, state (31) is normalized by choosing

N = 1√
g1

. (35)

In order to show that the exact eigenstates (25) span the original Hilbert space of harmonic
oscillator states (2) it will be necessary to evaluate their inner product with the harmonic
oscillator ground state |0〉. This is accomplished by first noting that the Baker–Campbell–
Hausdorff theorem yields the identity

c† exp

(
1

2

g∗
2

g∗
1

a†2
)

= (g1a
† − g2a) exp

(
1

2

g∗
2

g∗
1

a†2
)

= exp

(
1

2

g∗
2

g∗
1

a†2
)(

−g2a +
a†

g∗
1

)
, (36)
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where (5) has again been used. The inner product then reduces to evaluating

〈0|ñ〉 = N√
n!

〈0|
(

−g2a +
a†

g∗
1

)n

|0〉. (37)

The matrix element can be evaluated to give

Tn ≡ 〈0|
(

−g2a +
a†

g∗
1

)n

|0〉 =



0 if n is odd

n!
2n/2(n/2)!

(
− g2

g∗
1

) n
2

if n is even.
(38)

The proof is inductive, and begins by noting that (38) is correct for n = {0, 1, 2, 3, 4} by direct
calculation. Assuming that Tn and Tn−2 are given by (38), the next term Tn+2 can be evaluated
inductively with the result that for n an even integer

Tn+2 = −g2

g∗
1

〈0|a
(

−g2a +
a†

g∗
1

)n

a†|0〉

= (n + 2)!

2(n+2)/2 ((n + 2)/2)!

(
−g2

g∗
1

)(n+2)/2

, (39)

which completes the proof of (38). Using (38) in (37) yields the final form for the inner
product

〈0|ñ〉 =



0 if n is odd

N
√

n!
2n/2(n/2)!

(
− g2

g∗
1

) n
2

if n is even
(40)

with the complex conjugate of (40) holding for 〈ñ|0〉.
The proof of completeness for the exact eigenstates reduces to showing that the projection

operator P̂ = ∑∞
n=0 |ñ〉〈ñ| is a unit operator in the Hilbert space of the harmonic oscillator

states. The orthonormality of states (25) ensures that the operator P̂ is idempotent, P̂ 2 = P̂ ,
so that P̂ (P̂ − 1̂) = 0̂. The proof that P̂ = 1̂ over the Hilbert space of harmonic oscillator
states is inductive, and begins by noting that (40) gives

〈0|P̂ |0〉 = |N |2
∞∑

n=0,2,...

n!

2n
(

n
2 !

)2

( |g2|2
|g1|2

) n
2

= |N |2
√

|g1|2
|g1|2 − |g2|2 = 1 (41)

where the method employed in summing (33) has been used as well as results (5) and (35).
As a result, 〈0|P̂ |0〉 = 1. The projection operator must also preserve orthonormality of the
original harmonic oscillator states. Using the tools developed so far it is straightforward to
show that

〈1|P̂ |0〉 =
∞∑

n=0

〈1|ñ〉〈ñ|0〉 = 0. (42)

Result (42) follows from the fact that 〈1|ñ〉 = 0 for n even, while 〈ñ|0〉 = 0 for n odd. The
next step is to demonstrate that

〈2|P̂ |0〉 =
∞∑

n=0

〈2|ñ〉〈ñ|0〉 = 0. (43)

From the definitions of the exact eigenstates it follows that

〈2|ñ〉 = Nn(n − 1)

g∗
1

2√2(n!)
〈0|

(
−g2a +

1

g∗
1

a†
)(n−2)

|0〉 +
N√
2(n!)

g∗
2

g∗
1

〈0|
(

−g2a +
1

g∗
1

a†
)n

|0〉, (44)
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where the first term on the right-hand side of (44) is present only if n � 2. Result (38) can
now be combined with the complex conjugate of (40) to give

∞∑
n=0

〈2|ñ〉〈ñ|0〉 = |N |2g∗
2√

2g∗
1

+
|N |2g∗

2√
2g∗

1

∞∑
n=2,4,...

n!

2n((n/2)!)2

(
1 − n

|g2|2
) ( |g2|2

|g1|2
)n/2

. (45)

Using the identities

g∗
2√

2g∗
1

∞∑
n=2,4,...

n!

2n((n/2)!)2

( |g2|2
|g1|2

)n/2

= g∗
2√

2g∗
1

(|g1| − 1) (46)

1√
2g∗

1g2

∞∑
n=2,4,...

nn!

2n((n/2)!)2

( |g2|2
|g1|2

)n/2

= g∗
2√

2g∗
1

|g1| (47)

shows that (45) vanishes. The preservation of orthonormality can now be extended to all the
harmonic oscillator states by using induction.

3. Coherent state transition elements

In order to connect these results to optical processes, the transition element between harmonic
oscillator coherent states [1] will be calculated for the case that time evolution is governed
by the Hamiltonian (1). Harmonic oscillator coherent states are well understood [10] and the
brief review presented at the beginning of this section is simply to establish notation and define
the transition element to be analysed. In their simplest canonical form the harmonic oscillator
coherent state |ν〉 is defined as

|ν〉 = eνa†−ν∗a|0〉, (48)

where ν is an arbitrary dimensionless complex number. Result (27) shows that

eνa†−µ∗a = e− 1
2 µ∗ν eνa†

e−µ∗a. (49)

Using (49) the coherent state can be written as

|ν〉 = eνa†−ν∗a|0〉 = eνa† |0〉 e− 1
2 ν∗ν =

∞∑
n=0

νn

√
n!

|n〉 e− 1
2 ν∗ν, (50)

where the property exp(−ν∗a)|0〉 = |0〉 has been used. It follows that

〈µ|ν〉 = e− 1
2 |µ|2− 1

2 |ν|2+µ∗ν . (51)

One of the important aspects of coherent states is that they give well-defined expectation
values for both the momentum p̂ and position x̂ operators, 〈µ|x̂|µ〉 = 1

2 (µ∗ + µ)/
√

2mω and
〈µ|p̂|µ〉 = i

2 (µ∗ − µ)
√

mω/2, where m and ω are the mass and frequency of the harmonic
oscillator (in the case of photon it is necessary [11] to replace mω with ω). As a result, they
represent wave-packets with well-defined expectation values for both position and momentum.
Using (51) shows that the coherent states define a unit projection operator since∫

[dλ] 〈µ|λ〉〈λ|ν〉 ≡
∫

dλR dλI

π
〈µ|λ〉〈λ|ν〉 = 〈µ|ν〉, (52)

where the integration is over both the real λR and imaginary λI parts of λ and the range
of both integrations is (−∞,∞). Demonstrating (52) consists of performing two Gaussian
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integrations using variants of the standard formula∫ ∞

−∞
dx e− 1

2 ρ2(1−iζ )x2±ηx =
√

2π

ρ2(1 − iζ )
exp

{
η2

2ρ2(1 − iζ )

}
(53)

where ρ and ζ are real while η may be complex.
For the case that the initial and final states are chosen to be coherent states the transition

element to be analysed in the remainder of this paper is given by

Wfi = 〈µ| e−iH(a†,a)T |ν〉, (54)

where H is given by (1) and the coherent states are defined by (48) in terms of the harmonic
oscillator basis. The exponentiated creation operator appearing in (50) and implicitly in
(54) can be treated as a pseudounitary transformation with the property of translating the
annihilation operator, since the Baker–Campbell–Hausdorff theorem result (28) gives

e−νa†
a eνa† = a + ν (55)

with a similar expression for the action of the exponentiated annihilation operator on the
creation operator

eµ∗aa† e−µ∗a = a† + µ∗. (56)

As a result, using (55) (56), and (49) allows (54) to be rewritten as

Wfi = e− 1
2 (|µ|2+|ν|2)〈0| eµ∗a e−iH(a†,a)T eνa† |0〉

= e− 1
2 (|µ|2+|ν|2−2µ∗ν)〈0| e−iH(a†+µ∗,a+ν)T |0〉, (57)

where the properties exp(−ν∗a)|0〉 = |0〉 and 〈0| exp(−µa†) = 〈0| have again been used.
The creation and annihilation operators appearing in the Hamiltonian (1) have been translated
by the complex numbers characterizing the coherent states.

Evaluating the transition element (57) can be viewed as simply an exercise in normal
ordering. However, the evaluation is greatly simplified by projecting the harmonic oscillator
ground state onto the states defined by (25). The projection operator P̂ is not useful for the
coherent state transition element since it leads to intractable infinite sums. Instead, it is more
useful to modify the coherent states (48) to be consistent with the algebra of c† and c and then
to define a unit projection operator in terms of the modified coherent states. It will be seen
that using such a coherent state projection operator reduces the transition element to a set of
Gaussian integrals, consistent with the quadratic nature of (1). The modified coherent states
are defined in analogy with (48) as

|ν̃〉 = eνc†−ν∗c|0̃〉 =
∞∑

n=0

νn

√
n!

|ñ〉 e− 1
2 ν∗ν (58)

〈µ̃| = 〈0̃|eµ∗c−µc† =
∞∑

n=0

(µ∗)n√
n!

〈ñ| e− 1
2 µ∗µ. (59)

These modified coherent states can now be used to define a unit projection operator

P̂ =
∫

dνI dνR

π
|ν̃〉〈ν̃| ≡

∫
[dν] |ν̃〉〈ν̃| = 1̂. (60)

The demonstration of (60) contains an important subtlety regarding Gaussian integrations.
Using (40) and definition (58) gives

〈0|ν̃〉 = N

∞∑
n=0,2,...

νn

2n/2(n/2)!

(
−g2

g∗
1

)n/2

e− 1
2 ν∗ν = N exp

(
−ν2g2

2g∗
1

− 1

2
ν∗ν

)
. (61)
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In an identical manner it follows that

〈ν̃|0〉 = N∗ exp

(
−ν∗2g∗

2

2g1
− 1

2
ν∗ν

)
. (62)

For the non-interacting case that g2 → 0 and g1 → 1 both results (61) and (62) reduce to the
form given by (51). However, it is important to determine under what conditions the presence
of the additional quadratic term in (62) is consistent with the same measure of integration as
(52). Denoting ν = a + bi, it follows that∫

[dν] 〈0|ν̃〉〈ν̃|0〉 = |N |2
∫

da db

π
exp{−a2(1 + q1) − b2(1 − q1) + 2q2abi} (63)

where

q1 = 1

2

(
g∗

2

g1
+

g2

g∗
1

)
(64)

and

q2 = 1

2

(
g∗

2

g1
− g2

g∗
1

)
. (65)

While q2 is pure imaginary, the expression q1 is real. If |q1| � 1, then one of the Gaussian
integrations in (63) will be divergent and (60) will no longer be unity. It is therefore critical
to determine the conditions for which this does not occur. Expressing the two complex
parameters in the polar form, g1 = |g1| eig and α = |α| eiz, and using (16) and (17), it is
straightforward to show that

q1 =
(

� − ω

2|α|
)

cos(2g + z). (66)

Using the form for � shows that |q1| < 1 as long as ω > 2|α|. This is the same criterion
determined earlier for the validity of the Bogoliubov transformation. As a result, as long as the
Bogoliubov criterion is met, the Gaussian integrations in (63) will be well defined. Assuming
this criterion is met, the b integration in the coherent state projection operator (63) then yields∫

[dν] 〈0|ν̃〉〈ν̃|0〉 = |N |2√
1 − q1

∫
da√
π

exp

{
−a2

(
1 − q2

1 + q2
2

1 − q1

)}
. (67)

Using the definitions (64) and (65) as well as condition (5) immediately yields

1 − q2
1 + q2

2 = 1 − |g2|2
|g1|2 = 1

|g1|2 > 0. (68)

It follows that the remaining Gaussian integration in (67) is also well defined since both
the numerator and denominator of

(
1 − q2

1 + q2
2

)/
(1 − q1) are positive. The final result of

integrating a in (67) is therefore∫
[dν] 〈0|ν̃〉〈ν̃|0〉 = |N |2|g1| = 1 (69)

demonstrating that the normalization (35) yields a unit coherent state projection operator.
While they are algebraically more complicated, higher-order matrix elements may be
demonstrated similarly.

The Hamiltonian appearing in the matrix element (54) will now be expressed in terms of
the c† and c operators. Using forms (3) and (4) it follows that the translated Hamiltonian takes
the form

H(a† + µ∗, a + ν) = �c†c + γ c† + δc + K + 1
2� ≡ Heff(c

†, c), (70)
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where γ , δ and K are given by

γ = (ωg∗
2 + 2g∗

1α
∗)µ∗ + (ωg∗

1 + 2g∗
2α)ν = �(g∗

1ν − g∗
2µ

∗) (71)

δ = (ωg1 + 2g2α
∗)µ∗ + (ωg2 + 2g1α)ν = �(g1µ

∗ − g2ν) (72)

K = �(g1µ
∗ − g2ν)(g∗

1ν − g∗
2µ

∗) = γ δ

�
(73)

and the properties of the gj have been used. The matrix element (57) can now be evaluated
by projecting the state |0〉 onto the modified coherent states

Wf i =
∫

[dσ ][dτ ]〈0|σ̃ 〉〈σ̃ | e−iHeff(c
†,c)T |τ̃ 〉〈τ̃ |0〉 e− 1

2 (|µ|2+|ν|2−2µ∗ν). (74)

Similarly to (50) the modified coherent states are written as

〈σ̃ | = e− 1
2 σ ∗σ 〈0̃| eσ ∗c (75)

|τ̃ 〉 = eτc† |0̃〉 e− 1
2 τ ∗τ (76)

so that the exponentiated operators play a role for the c algebra identical to that of (55) and
(56) for the a algebra. Combining this property with (49), (61) and (62), (74) becomes

Wf i = |N |2
∫

[dσ ][dτ ] e
−(|σ |2+|τ |2−σ ∗τ+

g∗
2

2g1
τ ∗2+ g2

2g∗
1
σ 2)〈0̃| e−iHeff(c

†+σ ∗,c+τ)T |0̃〉 e− 1
2 (|µ|2+|ν|2−2µ∗ν),

(77)

where the Hamiltonian has undergone another translation similar in form to (57) and is given
explicitly by

Heff(c
† + σ ∗, c + τ) = �c†c + (�τ + γ )c† + (�σ ∗ + δ)c + �σ ∗τ + γ σ ∗ + δτ + 1

2� + K.

(78)

The contribution of the operator part of (78) to the matrix element in (77) can be evaluated
exactly by a straightforward application of the Baker–Campbell–Hausdorff theorem. Denoting
γ̃ = �τ + γ and δ̃ = �σ ∗ + δ, it follows that

Zf i ≡ 〈0̃| e−i(�c†c+γ̃ c†+δ̃c)T |0̃〉
= 〈0̃| e−γ̃ c†/� eδ̃c/� e−i�c†cT e−δ̃c/� eγ̃ c†/�|0̃〉 eiγ̃ δ̃T /�

= 〈0̃| eδ̃c/� e−i�c†cT eγ̃ c†/�|0̃〉 e−γ̃ δ̃/�2
eiγ̃ δ̃T /�. (79)

An extension of result (28) yields

e−i�c†cT c†
n = (c† e−i�T )n e−i�c†cT

�⇒ e−i�c†cT exp(γ̃ c†/�) = exp(γ̃ c† e−i�T /�) e−i�c†cT . (80)

while (24) ensures that

e−i�c†cT |0̃〉 = |0̃〉. (81)

Using these results in (79) and applying (27) twice yields the final result

Zf i = 〈0̃| exp(δ̃c/�) exp(γ̃ c† e−i�T /�)|0̃〉 e−γ̃ δ̃/�2
eiγ̃ δ̃T /�

= exp

{
− γ̃ δ̃

�2

(
1 − e−i�T

)
+ i

γ̃ δ̃T

�

}
. (82)
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Using result (82) and the definitions of γ̃ , δ̃ and K in (77) gives

Wf i = |N |2 exp

[
−γ δ

�2

(
1 − e−i�T

) − i
1

2
�T − 1

2
(|µ|2 + |ν|2 − 2µ∗ν)

]

×
∫

[dσ ][dτ ] exp

[
−|σ |2 − |τ |2 − g∗

2

2g1
τ ∗2 − g2

2g∗
1

σ 2

+ σ ∗τ e−i�T −
(

γ σ ∗

�
+

δτ

�

)
(1 − e−i�T )

]
. (83)

The evaluation of the matrix element is now reduced to performing four Gaussian integrals
of form (53). The computation is tedious but straightforward, and so only the major details
will be presented. Suppressing all factors in (83) that are independent of σ and τ gives the
Gaussian integrals

G =
∫

[dτ ] exp

{
−|τ |2 − g∗

2

2g1
τ ∗2 − δτ

�
(1 − e−i�T )

}

×
∫

[dσ ] exp

{
−|σ |2 − g2

2g∗
1

σ 2 + σ ∗τ e−i�T − γ σ ∗

�
(1 − e−i�T )

}
︸ ︷︷ ︸

≡Q

. (84)

The integral Q solely over σ is next rewritten using σ = a + bi, so that it becomes

Q =
∫

da db

π
exp

{−(1 + q)a2 − (1 − q)b2 − 2iqab + 2z(a − bi)
}
, (85)

where

q = g2

2g∗
1

(86)

z = 1

2

[
τ e−i�T − γ

�
(1 − e−i�T )

]
. (87)

The integrations over a and b are defined only if the absolute value of the real part of q is less
than one. However, from (53) it is clear that these integrations are well defined regardless of
the value of the imaginary part of q. Using (16) and the polar decomposition preceding (66)
shows that the real part of q is given by

Re q =
(

� − ω

4|α|
)

cos(2g + z). (88)

It is straightforward to show that the absolute value of the real part of q is less than 1/2 as
long as the Bogoliubov criterion ω > 2|α| is satisfied, so that the integrations in (85) are
well defined. The integration over a is then a variant of (53) and yields, after some algebraic
manipulation,

Q =
√

π

1 + q

∫
db

π
exp

{
− b2

1 + q
− 2ibz

(
1 + 2q

1 + q

)
+

z2

1 + q

}
(89)

Performing the integral over b using (53) then yields, after some algebraic manipulation,

Q = exp{−4qz2} = exp

{
−q

[
τ 2 e−2i�T − 2τγ

�
e−i�T (1 − e−i�T ) +

γ 2

�2

(
1 − e−i�T

)2
]}

(90)
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Recombining (90) with (84) yields

G =
∫

[dτ ] exp

{
−|τ |2 − q∗τ ∗2 − δτ

�
(1 − e−i�T ) − qτ 2 e−2i�T

+
2qτγ

�
e−i�T (1 − e−i�T ) − qγ 2

�2
(1 − e−i�T )2

}
(91)

The integral G is also Gaussian, and the decomposition τ = a + bi yields

G =
∫

da db

π
exp

{−(1 + u)a2 − (1 − u)b2 + 2a (ibv − w) − 2biw
}
.

× exp

[
−qγ 2

�2
(1 − e−i�T )2

]
(92)

where

u = q∗ + q e−2i�T (93)

v = q∗ − q e−2i�T (94)

w =
(

1

2

δ

�
− qγ

�
e−i�T

)
(1 − e−i�T ). (95)

It is straightforward to use (16) and the polar decomposition preceding (66) to show that the
real part of u is given by

Re u =
(

� − ω

4|α|
)

(cos(2g + z) + cos(2g + z − 2�T )) . (96)

The absolute value of the total trigonometric contribution to (96) is bounded by 2, so that
|Re u| � (ω − �) /2|α|. Once again, this is less than unity if the Bogoliubov criterion is met
and the Gaussian integrals therefore remain well defined. Performing the integration over a
yields, after some algebraic manipulation,

G = exp

[
−qγ 2

�2
(1 − e−i�T )2

] √
π

1 + u

×
∫

db

π
exp

{
− 1

(1 + u)

[(
1 − 4q∗q e−2i�T

)
b2 − 2ibw (1 + u + v) + w2

]}
.

(97)

Result (97) is yet another Gaussian integral and is well defined since 4q∗q is a real positive
number less than unity, while result (66) shows that 1/(1 + u) has a real part that is positive.
The evaluation of (97) then yields, after algebraic manipulation,

G =
√

1

1 − 4q∗q e−2i�T
exp

{
− 4q∗w2

1 − 4q∗q e−2i�T
− qγ 2

�2
(1 − e−i�T )2

}
. (98)

Using (86) and (95) in (98) and returning the result to (83) yield the final exact result for the
transition element

Wf i = 1√
|g1|2 − |g2|2 e−2i�T

exp

{
−γ δ(1 − e−i�T )(|g1|2 − |g2|2 e−i�T )

�2(|g1|2 − |g2|2 e−2i�T )

− i
1

2
�T − (1 − e−i�T )2

2�2(|g1|2 − |g2|2 e−2i�T )
(g1g2γ

2 + g∗
1g

∗
2δ

2)

− 1

2
(|µ|2 + |ν|2 − 2µ∗ν)

}
. (99)
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All terms in (99) can be expressed uniquely in terms of ω, α, µ and ν. While |g1|2 and |g2|2
are given by (17) and (18) respectively, it is straightforward to use their forms in conjunction
with (20), (71) and (72) to show that

γ δ = �(ωµ∗ν + α∗µ∗2 + αν2) (100)

g∗
1g

∗
2δ

2 = −1

2

(
α

ω − �

)
[(ω − �)ν + 2α∗µ∗]2 (101)

g1g2γ
2 = −1

2

(
α∗

ω − �

)
[(ω − �)µ∗ + 2αν]2. (102)

Using the results derived so far it is easy to show that in the α → 0 limit

lim
α→0

Wf i = exp
(− 1

2 |µ|2 − 1
2 |ν|2 + µ∗ν e−iωT − 1

2 iωT
)
, (103)

which is the well known result for the simple harmonic oscillator in the absence of two
photon processes. A particularly simple form for (99) emerges when the vacuum persistence
probability is examined. Setting µ = ν = 0 in (99) yields

|〈0| e−iHT |0〉|2 = 1√
|g1|4 − 2|g1|2|g2|2 cos(2�T ) + |g2|4

. (104)

Using (5) and (19) shows that the vacuum persistence probability oscillates between 1 and
�/ω with the frequency 2�.

Another interesting limit to consider is the case where � → 0, which is the point where
the Bogoliubov transformation breaks down. Result (99) is a function of both α and α∗ and
is therefore not analytic in α. Because α can be complex, there is an infinite set of ways to
take the limit � → 0 and the non-analyticity of Wf i will therefore yield different results. It
is usually the case that α is assumed to be real. The limit � → 0 is then taken along the real
axis, so that α = α∗ → 1

2ω. It is straightforward to show that (99) then yields

lim
α→ 1

2 ω

Wf i = exp

{
−1

2

(
iωT +

1

2
ω2T 2

) (
µ∗ + ν

)2 − 1

2
(|µ|2 + |ν|2 − 2µ∗ν)

}
. (105)

For the case that α is pure imaginary, the limit requires α = −α∗ → 1
2 iω, and this yields

lim
α→ 1

2 iω
Wf i = exp

{− 1
2ωT (µ∗ + iν)2 − 1

4 iω2T 2(ν − iµ∗)2 − 1
2 (|µ|2 + |ν|2 − 2µ∗ν)

}
. (106)

The two results (105) and (106) are different, bearing out the non-analyticity of the point
� = 0 in particular. For such a case, it is interesting to consider the coherent state persistence
function, so that µ = ν. In the event that (105) is the relevant � → 0 limit, it follows that the
coherent state persistence probability becomes

lim
�→0

|〈µ| e−iHT |µ〉|2 = exp
{− 1

2ω2T 2(µ + µ∗)2
}
. (107)

The � → 0 limit corresponds to unstable coherent states, with the exception of the state
localized at 〈x〉 = 0, as discussed following (51). Despite instability, result (107) exhibits the
general property that the persistence probability is time-reversal invariant under T → −T .
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